Séquence 4

Limites de fonctions - Partie 2

I. Limite d'une fonction composée

Activité 4 p. 165 : introduction de la notion de fonction composée et de sa limite

Méthode: Déterminer la limite d'une fonction composée

Soit la fonction f définie sur $\int_{2}^{1} f(x) = \sqrt{2 - \frac{1}{x}}$

Calculer la limite de la fonction f en $+\infty$.

On a:
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
, donc $\lim_{x \to +\infty} 2 - \frac{1}{x} = 2$

Donc, comme limite de fonction composée : $\lim_{x \to +\infty} \sqrt{2 - \frac{1}{x}} = \sqrt{2}$ On peut en effet poser $X = 2 - \frac{1}{x}$ et calculer $\lim_{X \to 2} \sqrt{X} = \sqrt{2}$.

<u>Propriété</u>

Si
$$\begin{cases} \lim_{x \to a} f(x) = b \\ \lim_{x \to b} g(x) = c \end{cases}$$
 Alors $\lim_{x \to a} g(f(x)) = c$

Applications: capacité 5 et 6 p. 171 et exercices

II. Limites et comparaisons

A. Théorèmes de comparaisons

Théorème:

Soit fet g deux fonctions définies sur un intervalle a; $+\infty$, a réel, telles que pour tout x > a, on a $f(x) \le g(x)$.

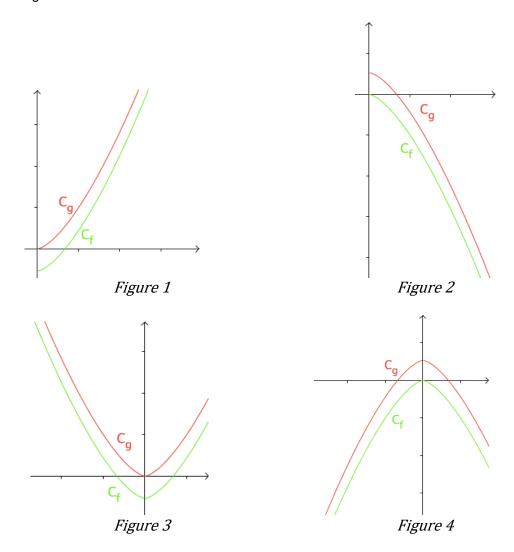
- Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
 alors $\lim_{x \to +\infty} g(x) = +\infty$ (figure 1)

- Si
$$\lim_{x \to +\infty} g(x) = -\infty$$
 alors $\lim_{x \to +\infty} f(x) = -\infty$ (figure 2)

- Si
$$\lim_{x \to -\infty} f(x) = +\infty$$
 alors $\lim_{x \to -\infty} g(x) = +\infty$ (figure 3)

- Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
 alors $\lim_{x \to +\infty} g(x) = +\infty$ (figure 1)
- Si $\lim_{x \to +\infty} g(x) = -\infty$ alors $\lim_{x \to +\infty} f(x) = -\infty$ (figure 2)
- Si $\lim_{x \to -\infty} f(x) = +\infty$ alors $\lim_{x \to -\infty} g(x) = +\infty$ (figure 3)
- Si $\lim_{x \to -\infty} g(x) = -\infty$ alors $\lim_{x \to -\infty} f(x) = -\infty$ (figure 4)

Par abus de langage, on pourrait dire que la fonction f pousse la fonction g vers $+\infty$ pour des valeurs de x suffisamment grandes.



Démonstration dans le cas de la figure 1 :

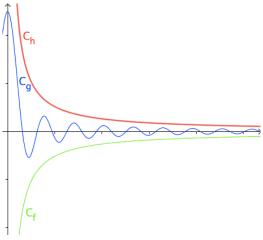
 $\lim_{x\to +\infty} f(x) = +\infty \text{ donc tout intervalle }]m \; ; \; +\infty [, m \text{ r\'eel, contient toutes les valeurs de } f(x) \text{ d\`es que } x \text{ est suffisamment grand, soit } : f(x) > m.$ Or, dès que x est suffisamment grand, on a $f(x) \leq g(x)$. Donc dès que x est suffisamment grand, on a : g(x) > m. Et donc $\lim_{x\to +\infty} g(x) = +\infty$.

B. Théorème d'encadrement

Théorème des gendarmes:

Soit f, g et h trois fonctions définies sur un intervalle]a; $+\infty[$, a réel, telles que pour tout x>a, on a $f(x)\leq g(x)\leq h(x)$. Si $\lim_{x\to +\infty} f(x)=L$ et $\lim_{x\to +\infty} h(x)=L$ alors $\lim_{x\to +\infty} g(x)=L$.

Remarque : On obtient un théorème analogue en $-\infty$.



Par abus de langage, on pourrait dire que les fonctions f et h (les gendarmes) se resserrent autour de la fonction g pour des valeurs de x suffisamment grandes pour la faire tendre vers la même limite.

Ce théorème est également appelé le théorème du sandwich.

Applications et méthodes: capacité 7 p. 173 et exercices

III. Croissance comparée

A. <u>Limites aux bornes de la fonction exponentielle</u>

Propriétés:

$$\lim_{x \to +\infty} e^x = +\infty \text{ et } \lim_{x \to -\infty} e^x = 0$$

Démonstration: (p. 168)

Méthode: Déterminer la limite d'une fonction contenant des exponentiels

<u>Calculer les limites suivantes :</u>

a)
$$\lim_{x \to +\infty} x + e^{-3x}$$

b)
$$\lim_{x \to -\infty} e^{1 - \frac{1}{x}}$$

B. Croissance comparée des fonctions exponentielles et puissances

Propriétés (croissances comparées):

a)
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$
 et pour tout entier n , $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$
b) $\lim_{x \to -\infty} x e^x = 0$ et pour tout entier n , $\lim_{x \to -\infty} x^n e^x = 0$

b)
$$\lim_{x \to -\infty} x e^x = 0$$
 et pour tout entier n , $\lim_{x \to -\infty} x^n e^x = 0$

Démonstration au programme du a : p. 172

Applications et méthodes : capacité 8 p. 173 et exercices