<u>Séquence 9</u>

Suites (partie 2)

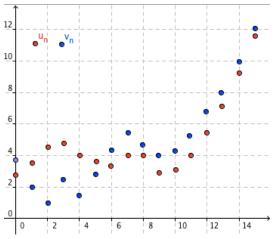
I. Limites et comparaison

A. Théorèmes de comparaison

Théorème 1:

Soit (u_n) et (v_n) deux suites définies sur \mathbb{N} . Si, à partir d'un certain rang, $u_n \leq v_n$ et $\lim_{n \to +\infty} u_n = +\infty$ alors $\lim_{n \to +\infty} v_n = +\infty$.

Par abus de langage, on pourrait dire que la suite (u_n) pousse la suite (v_n) vers $+\infty$ à partir d'un certain rang.



Démonstration au programme: (p.132)

Théorème 2:

Soit (u_n) et (v_n) deux suites définies sur \mathbb{N} . Si, à partir d'un certain rang, $u_n \ge v_n$ et $\lim_{n \to +\infty} u_n = -\infty$ alors $\lim_{n \to +\infty} v_n = -\infty$.

Méthode: Déterminer une limite par comparaison

Déterminer la limite suivante : $\lim_{n \to +\infty} n^2 + (-1)^n$

B. Théorème des gendarmes

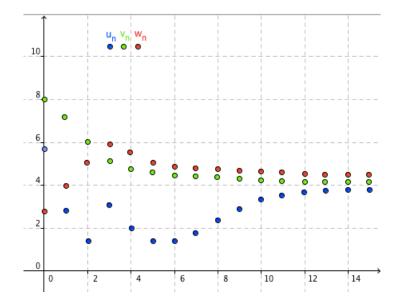
Activité 3 p. 127 : Visualiser le théorème des gendarmes

Théorème des gendarmes:

Soit (u_n) , (v_n) et (w_n) trois suites définies sur \mathbb{N} . Si, à partir d'un certain rang, $u_n \leq v_n \leq w_n$ et $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = L$ alors $\lim_{n \to +\infty} v_n = L$.

Par abus de langage, on pourrait dire que les suites (u_n) et (w_n) (les gendarmes) se resserrent autour de la suite (v_n) à partir d'un certain rang pour la faire converger vers la même limite.

Ce théorème est également appelé le théorème du sandwich.



<u>Méthode</u>: Déterminer une limite par encadrement

Déterminer la limite suivante : $\lim_{n \to +\infty} 1 + \frac{\sin n}{n}$

Exercices d'application : capacité 5 p. 133 et exercices

C. Comportement à l'infini d'une suite géométrique

1) Rappel

<u>Définition</u>: Une suite (u_n) est une **suite géométrique** s'il existe un nombre q tel que pour tout entier n, on a : $u_{n+1} = q \times u_n$. Le nombre q est appelé la **raison** de la suite. Exemple : La suite (u_n) définie par $u_{n+1} = -3u_n$ et $u_0 = 5$ est une suite géométrique de raison -3 et de premier terme 5.

<u>Propriété</u>: (u_n) est une suite géométrique de raison q et de premier terme u_0 . Pour tout entier naturel n, on a : $u_n = u_0 \times q^n$.

Exemple : Donner le terme général de la suite précédente

2) Limites

q	$q \leq -1$	-1 < q < 1	q = 1	q > 1
$\lim_{n\to\infty}q^n$	Pas de limite	0	1	+∞

Démonstration au programme dans le cas q > 1:

Exemple:

Déterminer la limite de la suite de terme général -5×4^n .

Exercices d'application: capacité 6 p. 133 et exercices

3) Somme des termes d'une suite géométrique

<u>Propriété</u> : *n* est un entier naturel non nul et *q* un réel différent de 1 alors on a :

$$1 + q + q^{2} + \dots + q^{n} = \frac{1 - q^{n+1}}{1 - q}$$

II. Théorème de comparaison et croissance comparée Activité 4 p. 127 : découvrir le théorème de convergence monotone

A. <u>Définitions</u>:

Définitions:

- La suite (u_n) est **majorée** s'il existe un réel M tel que pour tout entier $n \in \mathbb{N}$, $u_n \leq M$.
- La suite (u_n) est **minorée** s'il existe un réel m tel que pour tout entier $n \in \mathbb{N}$, $u_n \ge m$.
- La suite (u_n) est **bornée** si elle est à la fois majorée et minorée.

Exemples:

- Les suites de terme général $\cos n$ ou $(-1)^n$ sont bornées car minorées par -1 et majorées par 1.
- La suite de terme général n^2 est minorée par 0.

<u>Méthode</u>: Démontrer qu'une suite est majorée ou minorée

Capacité 7 p. 135 et exercices

B. Convergence des suites monotones

<u>Propriété</u>: Soit (u_n) une suite croissante définie sur \mathbb{N} . Si $\lim_{n \to +\infty} u_n = L$ alors la suite (u_n) est majorée par L.

Théorème de convergence monotone :

- Si une suite croissante est majorée alors elle est convergente.
- Si une suite décroissante est minorée alors elle est convergente.
- Admis -

Remarque:

Ce théorème permet de s'assurer de la convergence mais ne donne pas la limite.

Méthode: Utiliser le théorème de convergence monotone

Capacité 8 p. 135 et exercices

Corollaire:

- 1) Si une suite croissante est non majorée alors elle tend vers $+\infty$.
- 2) Si une suite décroissante est non minorée alors elle tend vers $-\infty$.

<u>Démonstration (du 1) au programme : p. 134</u>				
Exercices d'application :				