Séquence 17

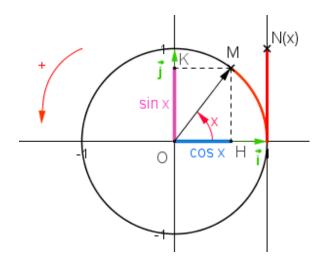
Fonctions trigonométriques

I. Rappels

A. Définitions

Dans le plan muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$ et orienté dans le sens direct, on considère un cercle trigonométrique de centre O.

Pour tout nombre réel x, considérons le point N de la droite orientée d'abscisse x. À ce point, on fait correspondre un point M sur le cercle trigonométrique. On appelle H et K les pieds respectifs des perpendiculaires à l'axe des abscisses et à l'axe des ordonnées passant par M.



Définitions:

- Le **cosinus** du nombre réel x est l'abscisse de M et on note cos x.
- Le **sinus** du nombre réel *x* est l'ordonnée de M et on note sin *x*.

Propriétés:

Pour tout nombre réel *x*, on a :

$$1) -1 \le \cos x \le 1$$

$$2) - 1 < \sin x < 1$$

2)
$$-1 \le \sin x \le 1$$
 3) $\cos^2 x + \sin^2 x = 1$

4) Valeurs remarquables des fonctions sinus et cosinus :

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

II. Propriétés des fonctions cosinus et sinus

A. Périodicité

Propriétés:

1) $\cos x = \cos(x + 2k\pi)$ où *k* entier relatif 2) $\sin x = \sin(x + 2k\pi)$ où *k* entier relatif

<u>Démonstration</u>:

Aux points de la droite orientée d'abscisses x et $x+2k\pi$ ont fait correspondre le même point du cercle trigonométrique.

Remarque:

On dit que les fonctions cosinus et sinus sont périodiques de période 2π .

Conséquence:

Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus, il suffit de la tracer sur un intervalle de longueur 2π et de la compléter par translation.

 $\underline{\text{M\'ethode}}$: Résoudre une équation et une inéquation trigonométrique Capacité 3 et 4 p. 273

B. Parité

Propriétés:

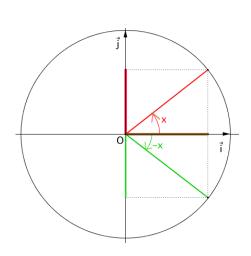
Pour tout nombre réel *x*, on a :

$$1)\cos(-x) = \cos x$$

$$2)\sin(-x) = -\sin x$$

Remarque:

On dit que la fonction cosinus est paire et que la fonction sinus est impaire.



Rappels:

Une fonction f est **paire** lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et f(-x) = f(x).

Une fonction f est **impaire** lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et f(-x) = -f(x).

Conséquences:

- Dans un repère orthogonal, la courbe représentative de la fonction cosinus est symétrique par rapport à l'axe des ordonnées.
- Dans un repère orthogonal, la courbe représentative de la fonction sinus est symétrique par rapport à l'origine.

Méthode: Etudier la parité d'une fonction trigonométrique

Démontrer que la fonction f définie sur \mathbb{R} par $f(x) = \sin x - \sin(2x)$ est impaire.

III. <u>Dérivabilité et variations</u>

A. <u>Dérivabilité</u>

<u>Théorème</u>:

Les fonctions cosinus et sinus sont dérivables sur \mathbb{R} et on a : (cos(x))' = -sin(x) et (sin(x))' = cos(x)

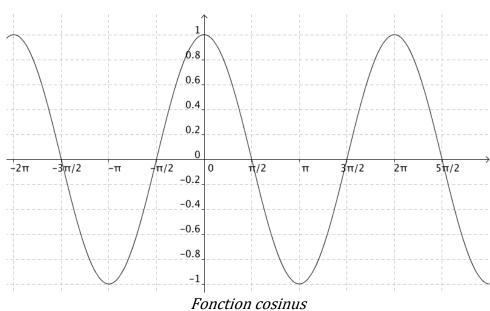
Remarque : (cos(x))' se note également cos'(x)

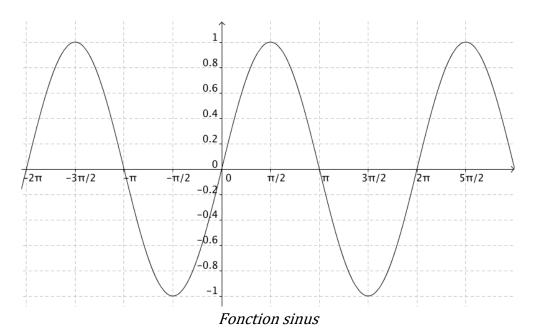
B. Variations

X	0		π
$\cos'(x) = -\sin x$	0	_	0
cos x	1		- -1

X	0		$\frac{\pi}{2}$		π
$\sin'(x) = \cos x$	1	+	0	-	-1
sin x	0-		√ 1 <		~ 0

C. Représentations graphiques





 $\underline{\textit{M\'ethode}:} Etudier une fonction trigonom\'etrique$

Capacité 1 et 2 p. 271