Séquence 2

<u>Limite des fonctions – Partie 1</u>

I. Limite d'une fonction et asymptote

Activité 2 p. 164 : introduction de la notion de limites à l'infini et en un point.

A. Limite à l'infini

1) Limite infinie à l'infini

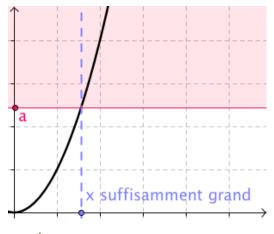
Exemple:

La fonction définie par $f(x) = x^2$ a pour limite $+\infty$ lorsque x tend vers $+\infty$.

En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment grand.

Si on prend un réel a quelconque, l'intervalle a; $+\infty$ [contient toutes les valeurs de la fonction dès que a est suffisamment grand.

↓ Interprétation graphique :



- **<u> Définitions</u>**
- On dit que la fonction f admet pour limite $+\infty$ en $+\infty$ si tout intervalle]a; $+\infty[$, a réel, contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note : $\lim_{x\to +\infty} f(x) = +\infty$

- On dit que la fonction f admet pour limite $-\infty$ en $+\infty$ si tout intervalle $]-\infty$; b[, b réel, contient toutes les valeurs de f(x) dès que x est suffisamment grand et on

note :
$$\lim_{x \to +\infty} f(x) = -\infty$$

2) Limite finie à l'infini

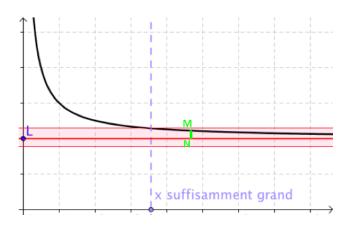
♣ Exemple :

La fonction définie par $f(x) = 2 + \frac{1}{x}$ a pour limite 2 lorsque x tend vers $+\infty$.

En effet, les valeurs de la fonction se resserrent autour de 2 dès que *x* est suffisamment grand. La distance MN tend vers 0.

Si on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que *x* est suffisamment grand.

↓ Interprétation graphique :



Définition:

On dit que la fonction f admet pour limite L en $+\infty$ si tout intervalle ouvert contenant L contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note : $\lim_{x\to +\infty} f(x) = L.$

➡ <u>Définition Asymptote horizontale :</u>

La droite d'équation y = L est **asymptote horizontale** à la courbe représentative de la fonction f en $+\infty$ si $\lim_{x \to +\infty} f(x) = L$.

- La droite d'équation y=L est **asymptote horizontale** à la courbe représentative de la fonction f en $-\infty$ si $\lim_{x\to -\infty} f(x)=L$.

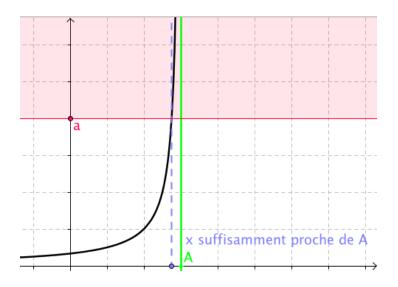
B. Limite d'une fonction en un réel A

Exemple:

La fonction représentée ci-dessous a pour limite $+\infty$ lorsque x tend vers A.

En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment proche de A.

Si on prend un réel a quelconque, l'intervalle a; $+\infty$ [contient toutes les valeurs de la fonction dès que a est suffisamment proche de a.



Définitions

- On dit que la fonction f admet pour limite $+ \neq = A$ si tout intervalle a; $+ \infty$, a réel, contient toutes les valeurs de f(x) dès que x est suffisamment proche de A et on note : $\lim_{x \to A} f(x) = + \infty$.
- On dit que la fonction f admet pour limite $\neq en A$ si tout intervalle $]- \infty$; b[, b réel, contient toutes les valeurs de f(x) dès que x est suffisamment proche de A et on note : $\lim_{x \to A} f(x) = \infty$.

Définition asymptote verticale

La droite d'équation x = A est **asymptote verticale** à la courbe représentative de la fonction f, si : $\lim_{x \to A} f(x) = +\infty$ ou $\lim_{x \to A} f(x) = -\infty$.

♣ Exemple et remarque

Certaines fonctions admettent des limites différentes en un réel A selon x > A ou x < A.

Considérons la fonction inverse définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

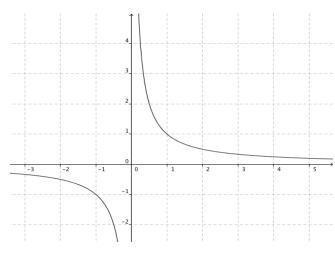
- Si x < 0: Lorsque x tend vers 0, f(x) tend vers $-\infty$ et on note :

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty \text{ ou } \lim_{\substack{x \to 0^-}} f(x) = -\infty.$$

- Si x > 0: Lorsque x tend vers 0, f(x) tend vers $+\infty$ et on note :

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty \text{ ou } \lim_{\substack{x \to 0^+}} f(x) = +\infty.$$

On parle de limite à gauche de 0 et de limite à droite de 0.



C. Applications

Déterminer graphiquement les limites d'une fonction et en déduire la présence d'asymptotes éventuelles.

✓ Capacité 1 et 2 p. 167 et exercices

II. calcul des limites

A. Opérations sur les limites

1) Limite d'une somme

$\lim_{x \to \alpha} f(x) =$	L	L	L	+∞	-∞	+∞
$\lim_{x \to \alpha} g(x) =$	L'	+∞	-∞	+∞	-∞	-8
$\lim_{x \to \alpha} f(x) + g(x) =$	L + L'	+∞	-∞	+∞	-∞	F.I.*

^{*}F.I = Forme indéterminée : On ne peut pas prévoir la limite éventuelle.

2) Limite d'un produit

$x \rightarrow \alpha$				1 111
$\lim_{x \to \alpha} f(x)g(x) =$	LL'	∞ ,	∞ ⊾	F.I.
$ \lim_{x \to \alpha} g(x) = $	L'	8	8	∞
$\lim_{x \to \alpha} f(x) =$	L	L	8	0

On applique la règle des signes pour déterminer si le produit est $+\infty$ ou $-\infty$.

Exemple:
$$\lim_{x\to-\infty} (x-5)(3+x^2)$$
?

3) Limite d'un quotient

$\lim_{x \to \alpha} f(x) =$	L	$L \neq 0$	L	8	∞	0
$\lim_{x \to \alpha} g(x) =$	$L'\neq 0$	0	8	L	∞	0
$ \lim_{x \to \alpha} \frac{f(x)}{g(x)} = $	$\frac{L}{L'}$	8	0	8	F.I.	F.I.

On applique la règle des signes pour déterminer si le produit est $+\infty$ ou $-\infty$

Exemple: $\lim_{x\to 3} \frac{1-2x}{x-3}$

Remarque:

Comme pour les suites, on rappelle que les quatre formes indéterminées sont, par abus d'écriture :

"
$$\infty - \infty$$
", " $0 \times \infty$ ", " $\frac{\infty}{\infty}$ " et " $\frac{0}{0}$ ".

B. Limite à l'infini

1) Limites de fonctions usuelles

Propriétés:

$$-\lim_{x\to+\infty}x^2=+\infty, \lim_{x\to-\infty}x^2=+\infty$$

$$-\lim_{x\to+\infty}x^3=+\infty, \lim_{x\to-\infty}x^3=-\infty$$

$$-\lim_{x\to+\infty} x^n = +\infty, \lim_{x\to-\infty} x^n = +\infty \text{ (pour } n \text{ pair)}$$

$$-\lim_{x\to+\infty} x^n = +\infty, \lim_{x\to-\infty} x^n = -\infty \text{ (pour } n \text{ impair)}$$

$$-\lim_{x\to+\infty}\sqrt{x}=+\infty$$

$$-\lim_{x\to+\infty}\frac{1}{x}=0, \lim_{x\to-\infty}\frac{1}{x}=0$$

$$-\lim_{x\to+\infty}e^x=+\infty, \lim_{x\to-\infty}e^x=0$$

2) Limites d'une fonction polynôme

Propriété:

En $+\infty$ et $-\infty$, une fonction polynôme a la même limite que son monôme de plus haut degré.

Exemples:

3) Limite d'une fonction quotient

<u>Propriété</u>

Soient P une fonction polynôme dont $a_p x^p$ est le monôme du plus haut degré, et Q une fonction polynôme dont le monôme du plus haut degré est $a_q x^q$, où p et q sont deux entiers naturels.

Alors

$$\lim_{\pm \infty} \frac{P(x)}{Q(x)} = \lim_{\pm \infty} \frac{a_p}{a_q} \times x^{p-q}$$

Exemples:

4) Applications

1)
$$\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1$$
 2) $\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5}$ 3) $\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1}$

3)
$$\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1}$$

Exercices:

C. Limite en un nombre

1) Limites de fonctions usuelles

<u>Propriétés</u>

- **♣** Pour tout n appartenant à N*, si n est pair, $\lim_{n \to \infty} \frac{1}{x^n} = +\infty$
- Pour tout n appartenant à N*, si n est impair, la fonction $x \to \frac{1}{x^n}$ a pour limite $+\infty$ quand x tend vers 0 avec x > 0. On parle de limite à droite en 0. Quand x tend vers 0 avec x < 0, elle a pour limite $-\infty$. On parle de limite à gauche en 0.
- $4 \quad \lim_{x \to 0} \frac{1}{\sqrt{x}} = +\infty$

2) Quelques exemples d'étude

1)
$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5}$$

2)
$$\lim_{x \to 3} \frac{1-2x}{x-3}$$